Search Implementation Status & Next Steps

đź“‹ Current Status Overview

The FastAPI admin application has a sophisticated search infrastructure implemented but not actively used by the search interface. This document outlines the current state, the gap between implementation and usage, and the roadmap to fully activate the hybrid search capabilities.

The hybrid search system is designed to provide comprehensive content discovery for a marketing firm’s conversation and document management system by combining:

1. Keyword Search (FTS5 + BM25)

2. Semantic Search (FAISS + OpenAI Embeddings)

3. Hybrid Scoring

🏗️ Current Implementation Status

✅ What’s Implemented (But Not Used)

1. Core Services

2. Database Models

3. Dependencies

4. Architecture Design

❌ What’s Actually Used (Basic Implementation)

1. Frontend Search Interface

// Current implementation - basic text input
<input type="text" 
       x-model="searchQuery" 
       @input.debounce.300ms="searchConversations()"
       placeholder="Search conversations...">

2. Backend Search Endpoint

# Current implementation - basic SQL LIKE queries
if q:
    search_conditions = [
        Conversation.title.contains(q),      # Basic SQL LIKE
        ConversationFolder.name.contains(q), # Basic SQL LIKE  
        Client.name.contains(q),             # Basic SQL LIKE
        Project.name.contains(q)             # Basic SQL LIKE
    ]
    conditions.append(or_(*search_conditions))

3. Search Scope

🔍 The Gap Analysis

Infrastructure vs. Usage Gap

Component Status Usage
HybridSearchService ✅ Implemented ❌ Not used
FAISS Integration ✅ Implemented ❌ Not used
FTS5 Virtual Tables ✅ Designed ❌ Not created
Embedding Generation ✅ Implemented ❌ Not used
Content Chunking ✅ Implemented ❌ Not used
Basic SQL Search âś… Implemented âś… Currently used

Missing Components

  1. FTS5 Virtual Tables: chunks_fts and document_chunks_fts are referenced but not created
  2. Content Processing: No automatic chunking of conversations/documents
  3. Embedding Generation: No automatic embedding creation for searchable content
  4. API Integration: Search endpoints don’t use HybridSearchService
  5. Frontend Integration: UI doesn’t expose advanced search capabilities

🚀 Next Steps Roadmap

Phase 1: Database Setup (Priority: High)

1.1 Create FTS5 Virtual Tables

-- Create FTS5 virtual tables for full-text search
CREATE VIRTUAL TABLE chunks_fts USING fts5(
    content,
    chunk_type,
    content='chunks',
    content_rowid='rowid'
);

CREATE VIRTUAL TABLE document_chunks_fts USING fts5(
    content,
    content='document_chunks', 
    content_rowid='rowid'
);

1.2 Database Migration

Phase 2: Content Processing (Priority: High)

2.1 Implement Content Chunking

2.2 Embedding Generation

Phase 3: API Integration (Priority: Medium)

3.1 Update Search Endpoints

# Replace basic SQL search with hybrid search
from services.hybrid_search_service import HybridSearchService
from services.embedding_service import EmbeddingService

async def search_conversations_hybrid(q: str):
    embedding_service = EmbeddingService()
    hybrid_service = HybridSearchService(embedding_service)
    
    # Use hybrid search instead of basic SQL
    results = await hybrid_service.hybrid_search(
        query=q,
        limit=20,
        search_type="conversation"
    )
    return results

3.2 Add New Search Endpoints

Phase 4: Frontend Enhancement (Priority: Medium)

4.1 Advanced Search Interface

4.2 Search Results Enhancement

Phase 5: Performance & Optimization (Priority: Low)

5.1 FAISS Index Management

5.2 Search Performance

📊 Expected Benefits

For Users

For the Marketing Firm

đź”§ Technical Considerations

Performance

Scalability

Maintenance

📝 Implementation Notes

Current Dependencies

# Already in pyproject.toml
"faiss-cpu>=1.12.0",
"numpy>=2.3.2", 
"openai>=1.106.1",
"aiosqlite>=0.21.0"

Environment Variables Needed

OPENROUTER_API_KEY=your_key_here  # For embeddings

Database Schema

🎯 Success Metrics

Phase 1 Success

Phase 2 Success

Phase 3 Success

Phase 4 Success

Overall Success


Last Updated: January 2025
Status: Infrastructure Complete, Integration Needed
Next Action: Create FTS5 virtual tables and implement content chunking