Search Implementation
Status & Next Steps
đź“‹ Current Status Overview
The FastAPI admin application has a sophisticated search
infrastructure implemented but not actively
used by the search interface. This document outlines the
current state, the gap between implementation and usage, and the roadmap
to fully activate the hybrid search capabilities.
🎯 Goal of Hybrid Search
The hybrid search system is designed to provide comprehensive
content discovery for a marketing firm’s conversation and
document management system by combining:
1. Keyword Search (FTS5 +
BM25)
- Purpose: Precise keyword matching and exact term
search
- Technology: SQLite’s FTS5 extension with BM25
ranking algorithm
- Use Case: Finding conversations/documents
containing specific terms, phrases, or exact matches
- Example: Search for “social media strategy” finds
exact mentions
2. Semantic
Search (FAISS + OpenAI Embeddings)
- Purpose: Understanding meaning and context beyond
exact keywords
- Technology: FAISS vector similarity search with
OpenAI embeddings (1536 dimensions)
- Use Case: Finding relevant content even when
different words are used
- Example: Search for “marketing approach” finds
content about “brand strategy” or “promotional tactics”
3. Hybrid Scoring
- Purpose: Combine both approaches for optimal
results
- Formula:
hybrid_score = (0.35 Ă— BM25_score) + (0.65 Ă— cosine_similarity_score)
- Benefit: Gets both precise keyword matches AND
semantically relevant content
🏗️ Current Implementation
Status
✅ What’s Implemented
(But Not Used)
1. Core Services
HybridSearchService
- Complete
implementation with FAISS + FTS5 integration
EmbeddingService
- OpenAI API
integration for generating embeddings
ChunkingService
- Content chunking for
granular search capabilities
2. Database Models
Chunk
- Conversation content chunks
for searchable pieces
ChunkEmbedding
- Vector embeddings
stored as BLOB data
DocumentChunk
- Document content
chunks
DocumentChunkEmbedding
- Document
vector embeddings
3. Dependencies
faiss-cpu>=1.12.0
- Vector
similarity search library
numpy>=2.3.2
- Numerical operations
for embeddings
openai>=1.106.1
- Embedding
generation API
4. Architecture
Design
- SQLite as single source of truth with both FTS5 and
FAISS
- In-memory FAISS index rebuildable from SQLite
data
- Hybrid scoring system with configurable
weights
❌ What’s
Actually Used (Basic Implementation)
1. Frontend Search
Interface
// Current implementation - basic text input
<input type="text"
x-model="searchQuery"
@input.debounce.300ms="searchConversations()"
placeholder="Search conversations...">
2. Backend Search
Endpoint
# Current implementation - basic SQL LIKE queries
if q:
search_conditions = [
Conversation.title.contains(q), # Basic SQL LIKE
ConversationFolder.name.contains(q), # Basic SQL LIKE
Client.name.contains(q), # Basic SQL LIKE
Project.name.contains(q) # Basic SQL LIKE
]
conditions.append(or_(*search_conditions))
3. Search Scope
- Only searches: Conversation titles, folder names,
client names, project names
- Does NOT search: Conversation content, message
text, document content
- No semantic understanding: Cannot find related
concepts or synonyms
🔍 The Gap Analysis
Infrastructure vs. Usage
Gap
Component |
Status |
Usage |
HybridSearchService |
âś… Implemented |
❌ Not used |
FAISS Integration |
âś… Implemented |
❌ Not used |
FTS5 Virtual Tables |
âś… Designed |
❌ Not created |
Embedding Generation |
âś… Implemented |
❌ Not used |
Content Chunking |
âś… Implemented |
❌ Not used |
Basic SQL Search |
âś… Implemented |
âś… Currently used |
Missing Components
- FTS5 Virtual Tables:
chunks_fts
and
document_chunks_fts
are referenced but not created
- Content Processing: No automatic chunking of
conversations/documents
- Embedding Generation: No automatic embedding
creation for searchable content
- API Integration: Search endpoints don’t use
HybridSearchService
- Frontend Integration: UI doesn’t expose advanced
search capabilities
🚀 Next Steps Roadmap
Phase 1: Database
Setup (Priority: High)
1.1 Create FTS5 Virtual
Tables
-- Create FTS5 virtual tables for full-text search
CREATE VIRTUAL TABLE chunks_fts USING fts5(
content,
chunk_type,
content='chunks',
content_rowid='rowid'
);
CREATE VIRTUAL TABLE document_chunks_fts USING fts5(
content,
content='document_chunks',
content_rowid='rowid'
);
1.2 Database Migration
- Create Alembic migration for FTS5 tables
- Add triggers to keep FTS5 tables in sync with main tables
- Test FTS5 functionality with sample data
Phase 2:
Content Processing (Priority: High)
2.1 Implement Content
Chunking
- Conversation Chunking: Break conversations into
searchable chunks
- Document Chunking: Process uploaded documents into
chunks
- Automatic Processing: Chunk content when
conversations/documents are created/updated
2.2 Embedding
Generation
- Automatic Embeddings: Generate embeddings for all
chunks
- Batch Processing: Process existing content to
create embeddings
- Update Triggers: Generate embeddings when content
changes
Phase 3: API
Integration (Priority: Medium)
3.1 Update Search
Endpoints
# Replace basic SQL search with hybrid search
from services.hybrid_search_service import HybridSearchService
from services.embedding_service import EmbeddingService
async def search_conversations_hybrid(q: str):
embedding_service = EmbeddingService()
hybrid_service = HybridSearchService(embedding_service)
# Use hybrid search instead of basic SQL
results = await hybrid_service.hybrid_search(
query=q,
limit=20,
search_type="conversation"
)
return results
3.2 Add New Search
Endpoints
/api/search/hybrid
- Full hybrid
search with both keyword and semantic
/api/search/keyword
- Keyword-only
search using FTS5
/api/search/semantic
- Semantic-only
search using FAISS
/api/search/documents
-
Document-specific search
Phase 4:
Frontend Enhancement (Priority: Medium)
4.1 Advanced Search
Interface
- Search Type Selection: Choose between keyword,
semantic, or hybrid
- Search Scope: Search conversations, documents, or
both
- Result Ranking: Show relevance scores and search
type used
- Search Suggestions: Auto-complete based on existing
content
4.2 Search Results
Enhancement
- Relevance Scoring: Display hybrid scores and search
method
- Content Previews: Show matching content
snippets
- Context Highlighting: Highlight matching terms in
results
- Search Analytics: Track search patterns and popular
queries
5.1 FAISS Index
Management
- Index Persistence: Save FAISS index to disk for
faster startup
- Incremental Updates: Update index when content
changes
- Memory Management: Optimize memory usage for large
datasets
- Caching: Cache frequent search results
- Async Processing: Background embedding
generation
- Search Analytics: Monitor search performance and
usage
📊 Expected Benefits
For Users
- Better Search Results: Find content even with
different wording
- Comprehensive Coverage: Search both exact terms and
related concepts
- Relevance Ranking: Most relevant results appear
first
- Content Discovery: Find related conversations and
documents
For the Marketing
Firm
- Knowledge Management: Better organization and
retrieval of client work
- Content Reuse: Find existing content for new
projects
- Client Insights: Discover patterns across client
conversations
- Efficiency: Faster content discovery and project
management
đź”§ Technical Considerations
- FAISS Index Size: Monitor memory usage as content
grows
- Embedding Costs: Track OpenAI API usage and
costs
- Search Latency: Optimize for sub-second search
responses
Scalability
- Database Growth: Plan for increasing content
volume
- Index Rebuilding: Handle FAISS index updates
efficiently
- Concurrent Searches: Support multiple simultaneous
searches
Maintenance
- Content Sync: Keep FTS5 tables synchronized with
main tables
- Embedding Updates: Handle content changes and
embedding regeneration
- Error Handling: Robust error handling for API
failures
📝 Implementation Notes
Current Dependencies
# Already in pyproject.toml
"faiss-cpu>=1.12.0",
"numpy>=2.3.2",
"openai>=1.106.1",
"aiosqlite>=0.21.0"
Environment Variables
Needed
OPENROUTER_API_KEY=your_key_here # For embeddings
Database Schema
- Existing:
chunks
,
chunk_embeddings
, document_chunks
,
document_chunk_embeddings
- Needed: FTS5 virtual tables and sync triggers
🎯 Success Metrics
Phase 1 Success
Phase 2 Success
Phase 3 Success
Phase 4 Success
Overall Success
Last Updated: January 2025
Status: Infrastructure Complete, Integration
Needed
Next Action: Create FTS5 virtual tables and implement
content chunking